هوش مصنوعی

هوش مصنوعی

اگر مقداری به تکنولوژی، صنعت، علم و حتی هنر علاقه‌مند باشید، حتما عبارت هوش مصنوعی در سال‌های اخیر به گوشتان خورده است. در پاسخ به سوال هوش مصنوعی چیست؟ در پاسخ باید گفت که این رشته شاخه‌ای گسترده از علوم کامپیوتر محسوب می‌شود که به‌طورخلاصه و ساده، هدفش تولید سیستم‌های هوشمند قادر به تصمیم گیری و انجام فعالیت‌های نیازمند به هوشی مانند انسان است. این فعالیت می‌تواند از نگارش همین محتوایی که در حال مطالعه هستید تا جراحی یا حتی آهنگسازی‌های ساده یا نوشتن کتابی خاص یا درست کردن صورت های مالی تلفیقی و … را در بر بگیرد.

به‌طور حتم در سال‌های آینده، هوش مصنوعی قطعا نقش فعال‌تری و بیشتری در زندگی روزمره‌ی ما بازی خواهد کرد. بنابراین آشنایی با ماهیت، انواع، مزایا و دیگر جزئیات مربوط به آن می‌تواند جذاب و حتی ضروری باشد.در این مقاله از سایت پارسیس، ضمن بررسی کلی این تکنولوژی و معرفی جوانب آن، انواع مختلفش را بررسی کرده و بعد به بیان کارایی ها، مفاهیم، مزایا و غیره این حوزه می‌پردازیم. با مقاله پارسیس درباره ی هوش مصنوعی همراه شده و با یکی از انقلابی‌ترین تکنولوژی‌های حال حاضر دنیا آشنا شوید.

 

ماهیت هوش مصنوعی چیست؟

 

به‌طورکلی هوش مصنوعی یا Artificial Intelligence و به‌اختصار AI عبارت از شبیه‌سازی فرآیندهای ذهنی و هوش انسانی توسط ماشین‌ها و کامپیوترها به‌منظور تکرار این فرآیند و نتایج حاصل از آن، بدون نیاز به انسان است.

علی‌رغم قرارداشتن پایه‌های هوش مصنوعی در علوم کامپیوتر، امروزه به آن، به‌عنوان یک علم میان‌رشته‌ای نگاه می‌شود. حتی ردپای علوم انسانی و پزشکی و یا علوم حقوقی را نیز می‌توان در برخی شاخه‌های مطالعاتی و کاربردی آن دید. با‌این‌حال این علم، آنطور که شاید به‌نظر برسد از زندگی روزمره‌ی ما دور نیست در واقع میشود گفت که اصلا دور نیست و ممکن است شما در روز بارها با هوش مصنوعی مواجه شوید ولی متوجه آن نشده باشید. در خانه و کامپیوتر هر یک از ما، ردپای آن در محصولات برندهایی مانند گوگل، اپل و آمازون دیده می‌شود. هربار که Siri را در گوشی اپل و Alexa را در سیستم هوشمند خانگی آمازون خود صدا می‌زنید، درواقع در حال استفاده از هوش مصنوعی هستید.

امروزه حتی هنگام خرید نیز ممکن است فروشنده یا تولیدکننده، مدعی استفاده از AI در محصولش شود. منظور آن‌ها در بیشتر مواقع، حضور یکی از جوانب این تکنولوژی مانند ماشین لرنینگ یا یادگیری ماشینی (Machine Learning) در طراحی محصول است.

عملکرد هوش مصنوعی بر پایه چیست؟

جدا از تعریف علمی، باید بدانیم که نحوه عملکرد یک ماشین هوش مصنوعی چگونه است؟ به‌طور‌ساده باید بگوییم اساس عملکرد این ماشین‌ها بر آنالیز داده‌های انبوه و یادگیری از آنها و سپس مدل‌سازی آن‌ها استوار است. سپس بر اساس مدل به‌دست‌آمده تصمیم یا نتیجه‌ی لازم را ارائه می‌دهند. مثلا جستجوی صوتی یا تصویری گوگل با آنالیز زبان، رنگ، المان‌ها و غیره انجام می‌شود تا مرتبط‌ ترین نتایج منطبق با گفتار و مطالب موجود در اینترنت به مخاطب نمایش داده شود. گوگل برای این ویژگی و دیگر امکاناتش از چندین شرکت هوش مصنوعی کمک می‌گیرد و یا در نرم افزار صورت های مالی تلفیقی پارسیس میتواند هوش مصنوعی بسیار کارآمد و مفید باشد و کیفیت خدمات به کلربر را با هوشمندسازی بسیار زیاد کند.

هوش مصنوعی با گذشت ده‌ها سال از زمان مطرح شدنش، هنوز به‌طورکامل نتوانسته است خود را از نظارت و دخالت انسانی بی‌نیاز کند. هرچند در برخی موارد مانند بازی‌های ویدئویی، دیگر نیازی به نظارت انسانی نیست اما در بیشتر سیستم‌ها حضور انسان برای مدل‌سازی بهتر و تصحیح اشتباهات ضروری است. در واقع بخشی در هوش مصنوعی وجود دارد تحت عنوان یادگیری بدون نظارت یا Unsupervised Learning که بدون دخالت انسان انجام میشود.

مثالی از ساز و کار هوش مصنوعی

برای درک بهتر عملکرد هوش مصنوعی یک ربات چت را تصور کنید. امروزه این ربات‌ها را با ورود به وب‌سایت‌های مختلف به‌ویژه وب‌سایت‌های فروشگاهی به‌وفور می‌بینیم. درحالی‌که تصور می‌شود شاید فردی در حال چت با شماست؛ اما در بیشتر مواقع، اینگونه نیست. این نرم‌افزارها، شامل تعداد زیادی پیام پیش‌فرض هستند که در زمان مناسب و در جواب به سوال یا درخواست مشخصی از شما به‌عنوان کاربر برای‌تان ارسال می‌شود. در‌واقع، یک ربات چت، تشخیص می‌دهد که در برابر چه کلمات، حروف و جملاتی، کدام جواب را ارسال کند.

برنامه نویسی هوش مصنوعی

اجرای هر تکنولوژی هوش مصنوعی به برنامه‌نویسی و آماده کردن آن سرویس متناسب با مسئله ما نیاز دارد. برنامه‌نویسی AI شامل سه بخش اصلی زیر است:

  • یادگیری: در این بخش با توجه به سیستمی که میخواهیم راه اندازی کنیم و داده هایی که در دسترس داریم، داده هارا برای آموزش مدل آماده میکنیم.
  • استدلال: در این بخش با توجه به رویکردی که در نظر داریم و انتظاری که از مدل هوش مصنوعی داریم الگوریتم مناسب برای مسئله مان را انتخاب میکنیم و دیتای آماده شده در مرحله قبل را به مدل میدهیم.
  • اصلاح؛ این بخش از برنامه‌ی نوشته‌شده، خطاهای الگوریتم‌ها را تشخیص داده و بر ارائه‌ی هرچه دقیق‌تر جواب‌ها در هر بار استفاده متمرکز است.

AI قوی چیست؟

هوش مصنوعی قوی یا Strong AI مدلی است که می‌تواند روی مسائل یا مشکلاتی کار کند که برای آن‌ها آموزش ندیده یا برنامه‌ریزی نشده است. این تکنولوژی، هوش مصنوعی را قادر کرده تا بتواند مانند یک انسان با هر مشکلی فی البداهه دست و پنجه نرم کند.. به این شاخه از AI، هوش مصنوعی عمومی (Artificial General Intelligence) یا به‌اختصار AGI گفته می‌شود.

AI قوی را اکنون باید تنها در شخصیت‌های فیلم‌های علمی‌تخیلی مانند شخصیت Data در Star Track ببینیم. دانشمندان در آزمایشگاه به نتایج محدودی درباره‌ی این تکنولوژی رسیده‌اند. آن‌ها اما مانند بسیاری از تکنولوژی‌هایی که امروز از آن‌ها استفاده می‌کنیم، امید دارند که AI قوی نیز قطعا روزی به واقعیت بدل شود. بسیاری نیز نگران نتایج غیرقابل‌کنترل اعمال ماشین‌هایی هستند که با موفقیت در راه‌اندازی کامل این تکنولوژی، ممکن است اتفاق بیفتد.

AI ضعیف چیست؟

 

تابه‌امروز هر استفاده‌ای که از هوش مصنوعی کرده‌ایم، مربوط به این حوزه بوده است. به این شاخه، هوش مصنوعی باریک (Narrow AI) و Specialized AI نیز گفته می‌شود . منظور از AI ضعیف، کاربرد این تکنولوژی در شاخه‌ای خاص از تکنولوژی، صنعت، پزشکی یا هر زمینه‌ی دیگری است.

یک ماشین مجهز به هوش مصنوعی ضعیف، تنها قادر است که ذهن انسان را در رابطه با مهارت، چالش یا موضوعی خاص شبیه‌سازی کرده و بر اساس الگوریتم‌هایش مدل‌سازی کند. نمونه‌هایی از هوش مصنوعی ضعیف عبارتند از:

  • – سیری و الکسا و کلیه Assistant‌ های هوشمند
  • – ماشین‌های خودران
  • – جستجوی گوگل
  • – ربات‌های مکالمه‌ای
  • – فیلترهای اسپم ایمیل
  • – پیشنهاددهنده‌های محتوا در شبکه‌های اجتماعی مانند یوتیوب و گوگل

ماشین لرنینگ و دیپ لرنینگ دو موجودیت مهم هوش مصنوعی

دو المان مهم مفهومی و تکنولوژیکی هوش مصنوعی ماشین لرنینگ(Machine Learning) و دیپ لرنینگ (Deep Learning) هستند. درحالی‌که بسیاری آن‌ها را به‌جای یکدیگر به‌کار می‌برند؛ اما  کارکرد آن‌ها متفاوت است. در این بخش از دانستنی های پارسیس، این دو المان را معرفی می‌کنیم.

منظور از ماشین لرنینگ در هوش مصنوعی

ماشین لرنینگ فرایندی است که طی آن، داده‌های یک الگوریتم توسط کامپیوتر و تکنیک‌های آماری تغذیه می‌شوند. هدف از این کار، کمک به یادگیری و بهبود تدریجی عملکرد الگوریتم است. این الگوریتم لزوما برای انجام یک کار خاص برنامه‌ریزی نشده است؛ اما به‌واسطه‌ی این سازوکار می‌تواند به تدریج، روند انجام آن را فرا بگیرد.

به یک الگوریتم Machine Learning به‌اختصار ML گفته می‌شود. این الگوریتم از داده‌های قبلی و ساختاریافته به‌منظور پیش‌بینی مقادیر خروجی خود استفاده می‌کند. بر این اساس، ماشین لرنینگ خود به دو نوع زیر تقسیم می‌شود:

- یادگیری نظارت‌شده یا supervised learning که در آن، نتایج بر اساس داده‌های ورودی برچسب‌گذاری‌شده یا ساختاریافته از قبل مشخص هستند.

- یادگیری غیرنظارت‌شده یا unsupervised learning که در آن از داده‌های بدون برچسب یا غیرساختاری استفاده می‌شود. نتایج این الگوریتم، غیرقابل‌پیش‌بینی هستند.

منظور از دیپ لرنینگ در هوش مصنوعی

این الگوریتم، نوعی الگوریتم ماشین لرنینگ است در واقع زیر مجموعه ای از ماشین لرنینگ است که داده‌های ورودی خود را با الهام از مدل‌های شبکه‌ی عصبی موجودات زنده اجرا می‌کند. این مدل‌ها از علم بیولوژی کپی می‌شوند. در یک شبکه‌ی عصبی، لایه‌های متعدد وجود دارند. هریک از این لایه‌ها می‌توانند لایه ورودی یا لایه پنهان یا لایه خروجی باشند. وظیفه‌ی نهایی آن‌ها نیز این است که داده‌ها را در سطوح متفاوتی پردازش کنند. این مکانیسم به الگوریتم، امکان یادگیری عمیق‌تر الگوی موردنظر را می‌دهند.

 یادگیری عمیق همچنین قدرت بالایی در پردازش داده‌های غیرساختاری خام مانند تصاویر و متون دارد. چنین سیستمی می‌تواند با استفاده از ویژگی‌های سلسله‌مراتبی که برایش تعریف شده، این نوع داده‌ها را به‌راحتی و با دقت و سرعت بیشتری طبقه‌بندی کند و از این اطلاعات ویژگی های مهم را استخراج کند.

انواع ماشین های هوش مصنوعی

براز سال ۲۰۱۶ و بر اساس پیشنهاد آرند هینتزه (Arend Hintze) استاد دانشگاه ایالتی میشیگان در رشته‌های زیست‌شناسی، علوم کامپیوتر و مهندسی، ماشین‌های هوش مصنوعی به چهار دسته تقسیم‌بندی شدند. این دسته‌بندی جزئیات بیشتری در مورد نوع و پیچیدگی وظایف یک سیستم AI ارائه می‌دهد. در ادامه، انواع هوش مصنوعی بر این اساس را بررسی می‌کنیم.

ماشین واکنشی

ماشین واکنشی یا Reactive Machine در هوش مصنوعی چیست؟ این سیستم از ابتدایی‌ترین مفاهیم هوش مصنوعی بهره می‌برد. همانطورکه از عنوان این ماشین پیداست، تنها قادر است از الگوریتم‌های خود برای درک و واکنش متقابل استفاده کند. Reactive Machine، حافظه‌ای ندارد و نمی‌تواند اطلاعات را ذخیره کند. بنابراین استفاده از داده‌های گذشته برای مدل‌سازی‌های بعدی نیز در آن منتفی است.

ماشین‌های واکنشی یا واکنش‌گرا برای انجام وظایف خاصی طراحی می‌شوند. محدودیت عملکرد و ادراک آن‌ها، سبب قابل‌اعتمادتر‌شدن نتایج حاصل از الگوریتم‌های‌شان در بعضی مسائل و موقعیت ها شود.

ماشین حافظه محدود

یک ماشین هوش مصنوعی حافظه محدود (Limited Memory) می‌تواند دادها و پیش‌‌بینی‌های قبلی ذخیره کند. اطلاعات هنگام مدل‌سازی‌ها و ارائه نتایج در دفعات بعدی اجرای الگوریتم‌ها به کمک سیستم آمده و نتایج آن را دقیق‌تر می‌کنند. هدف از طراحی چنین سیستمی به‌دست‌آوردن پیش‌‌بینی‌های محدود، درباره‌ی نتایج با توجه به داده‌های گذشته است.

ماشین تئوری ذهن

ماشین تئوری ذهن (Theory of the Mind) هنوز در حد تئوری بوده و بشر هنوز به توانایی‌های لازم برای شکوفایی پتانسیل‌های آن دست نیافته است. این تئوری بر یک فرضیه‌ی اساسی روانشناختی استوار است که می‌گوید رفتار فرد می‌تواند تحت تاثیر افکار و احساسات دیگران قرار بگیرد.

بر این اساس، محققان این حوزه در تلاش برای ساختن ماشینی هستند که بتواند احساس یا منظور موجودات زنده و دیگر ماشین‌ها را را درک کند. این ماشین از طریق تامل خودش (Self-Reflection) در مورد این اطلاعات، تصمیم‌گیری و عمل می‌کند. بنابراین با اختراع ماشین تئوری ذهن، ارتباط حسی در زمان واقعی بین ذهن انسان و هوش مصنوعی برقرار خواهد شد.

ماشین خودآگاهی

کلمه خودآگاهی را در روانشناسی و علوم انسانی زیاد می‌شنویم؛ اما منظور از آن در هوش مصنوعی چیست؟ به‌طور‌ساده باید گفت که پیدایش این ماشین، به پیدایش ماشین هوش مصنوعی تئوری ذهن وابسته است. ماشین هوش مصنوعی، خودآگاهی (Self-Awareness) درحال‌حاضر حد نهایت پیشرفت این تکنولوژی تلقی می‌شود. سطح آگاهی چنین ماشینی در حد انسان بوده و از وجود خود در جهان و حضور دیگران و وضعیت احساسی و ذهنی‌شان آگاه است.

در حالت ایده‌آل یک ماشین خودآگاه می‌تواند بفهمد که نیازهای دیگران نه‌فقط به‌واسطه‌ی داده‌های ورودی؛ بلکه بر اساس نوع رفتار، حالت چهره، حالت صدا و به‌طورکلی نحوه‌ی برقراری ارتباط آن‌ها چیست. لازمه‌ی پیشرفت در این زمینه، پیش از هرچیز این است که مکانیسم هوشیاری و خودآگاهی در انسان درک شود. عرصه‌ای که هنوز، ناشناخته‌های زیادی برای دانشمندان دارد. پس‌ازآن لازم است که مدل‌هایی برای تکرار و پیاده‌سازی فرآیند خودآگاهی در ماشین هوش مصنوعی طراحی شوند.

ارسال نظر

آدرس ایمیل شما منتشر نخواهد شد.